Effects of intrinsic PEEP on pulmonary gas exchange in mechanically-ventilated patients.
نویسندگان
چکیده
The aim of the study was to assess the impact of the intrinsic positive end-expiratory pressure (PEEPi) on pulmonary gas exchange in mechanically-ventilated patients, by comparing the effects of similar levels (0.8-0.9 kPa) of positive end-expiratory pressure (PEEP) and PEEPi. Ten patients with acute respiratory failure, without chronic airway disease, were studied with three ventilatory modes: 1) intermittent positive pressure ventilation with zero end-expiratory pressure (ZEEP mode); 2) continuous positive pressure ventilation with PEEP set by the ventilator (PEEP mode); and 3) intrinsic PEEP elicited by adequate shortening of the expiratory time (PEEPi mode). Cardiorespiratory variables (e.g. respiratory compliance and resistance, arterial and mixed venous blood gases, cardiac output, pulmonary capillary pressure, oxygen delivery) were measured during each ventilatory mode. Compared to ZEEP, both PEEP and PEEPi decreased cardiac output while increasing arterial oxygen tension (PaO2). However, the improvement of PaO2 was more consistent (8 out of 10 patients), and larger (+2.1 kPa, on average, p < 0.05) with PEEP than with PEEPi (5 out of 10 patients, and +1.4 kPa, on average, NS). Since the effects of PEEP and PEEPi on ventilation, lung volume, compliance, cardiac output (QT), mixed venous oxygen tension (PvO2) and oxygen consumption (VO2) were similar, we attributed the less favourable impact of PEEPi on PaO2 to a less homogeneous distribution of PEEPi between lung units with different time constant, and hence to a more uneven distribution of the inspired gas.
منابع مشابه
استفاده همزمان از دو ونتیلاتور برای درمان عوارض ریوی ناشی از تهویه مکانیکی در بیمار مولتیپل تروما: گزارش مورد
Background and Objective: Some of multiple trauma patients admitted in ICU (Intensive Care Unit) are intubated and ventilated by mechanical ventilation. These patients are prone to many complications such as lung disease. Reasons for this complication are patients without any movement, incomplete cough reflex, GI aspiration and then not a good pulmonary discharge prone the lungs of patients to ...
متن کاملPositive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth.
The factors regulating lung aeration and the initiation of pulmonary gas exchange at birth are largely unknown, particularly in infants born very preterm. As hydrostatic pressure gradients may play a role, we have examined the effect of a positive end-expiratory pressure (PEEP) on the spatial and temporal pattern of lung aeration in preterm rabbit pups mechanically ventilated from birth using s...
متن کاملCardiac output estimation using pulmonary mechanics in mechanically ventilated patients
The application of positive end expiratory pressure (PEEP) in mechanically ventilated (MV) patients with acute respiratory distress syndrome (ARDS) decreases cardiac output (CO). Accurate measurement of CO is highly invasive and is not ideal for all MV critically ill patients. However, the link between the PEEP used in MV, and CO provides an opportunity to assess CO via MV therapy and other exi...
متن کاملState of the evidence: mechanical ventilation with PEEP in patients with cardiogenic shock.
The need to provide invasive mechanical ventilatory support to patients with myocardial infarction and acute left heart failure is common. Despite the large number of patients requiring mechanical ventilation in this setting, there are remarkably few data addressing the ideal mode of respiratory support in such patients. Although there is near universal acceptance regarding the use of non-invas...
متن کاملOn-line monitoring of intrinsic PEEP in ventilator-dependent patients.
Measurement of the intrinsic positive end-expiratory pressure (PEEP(i)) is important in planning the management of ventilated patients. Here, a new recursive least squares method for on-line monitoring of PEEP(i) is proposed for mechanically ventilated patients. The procedure is based on the first-order model of respiratory mechanics applied to experimental measurements obtained from eight vent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European respiratory journal
دوره 6 3 شماره
صفحات -
تاریخ انتشار 1993